"

56 Review: Transport of Electrolytes across Cell Membranes

A teaspoon of table salt readily dissolves in water. The solubility of sodium chloride results from its capacity to ionize in water. Salt and other compounds that dissociate into their component ions are called electrolytes. In water, sodium chloride (NaCl) dissociates into the sodium ion (Na+) and the chloride ion (Cl). The most important ions, whose concentrations are very closely regulated in body fluids, are the cations sodium (Na+), potassium (K+), calcium (Ca+2),and magnesium (Mg+2); and the anions chloride (Cl-), carbonate (CO3-2), bicarbonate (HCO3-), and phosphate(PO3-). Electrolytes are lost from the body during urination and perspiration. For this reason, athletes are encouraged to replace electrolytes and fluids during periods of increased activity and perspiration.

Osmotic pressure is influenced by the concentration of solutes in a solution. It is directly proportional to the number of solute atoms or molecules and not dependent on the size of the solute molecules. Because electrolytes dissociate into ions, adding relatively more solute molecules to a solution, they exert a greater osmotic pressure per unit mass than non-electrolytes such as glucose.

Water passes through semi-permeable membranes by passive diffusion, moving along a concentration gradient and equalizing the concentration on either side of the membrane. Electrolyte ions may not be able to passively diffuse across a membrane, but may instead require special mechanisms to cross the semi-permeable membrane. The mechanisms that transport ions across membranes are facilitated diffusion and active transport. Facilitated diffusion of solutes occurs through protein-based channels. Active transport requires energy in the form of ATP conversion, carrier proteins, or pumps in order to move ions against the concentration gradient.

 

License

Icon for the Creative Commons Attribution 4.0 International License

Animal Physiology Copyright © by Rachael Hannah and Eddie Joo is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.